Graphing Quadratic Functions

$f(x) = a(x-h)^2 + k$		$f(x) = ax^2 + bx + c$
If <i>a</i> is positive $\rightarrow \odot$, with a minimum If <i>a</i> is negative $\rightarrow \odot$, with a maximum	1. Determine which way parabola opens	If <i>a</i> is positive $\rightarrow \odot$, with a minimum If <i>a</i> is negative $\rightarrow \odot$, with a maximum
Vertex is (h, k) (standard form is subtraction, so the sign of h appears to be the opposite)	2. Find vertex (axis of symmetry is first of ordered pair)	Vertex is $\frac{-b}{2a}$ for <i>x</i> , and then solve for <i>y</i>
Make $x = 0$ and solve	3. Find <i>y</i> -intercept	Make $x = 0$ and solve
Set $f(x) = 0$ and solve for x	3. Find <i>x</i> -intercept(s) – there may be one, two or none	Set equation equal to 0 and solve
	5. Use axis of symmetry to find the point mirroring the y-intercept.	

In word problems:

1. Pay attention to the question: does it ask for a minimum value or a maximum value?

- *e.g.* What is the largest product of two numbers whose sum is 20? asking for a maximum
- 2. Identify equation(s). If there are two equations, combine them into one, using substitution.

e.g. The product of two numbers is xy. The sum is x + y = 20. Solve for y: y = 20 - x and substitute: x(20 - x)

3. Set the equation equal to 0. *e.g.* 0 = x(20 - x), $0 = 20x - x^2$ or $0 = -x^2 + 20x$

4. Solve for
$$\frac{-b}{2a}$$
 This will be your minimum or maximum value. Answer the question.
e.g. In $0 = -x^2 + 20x$, the *b* is 20 and the *a* is -1. $\frac{-b}{2a}is\frac{-20}{2(-1)}$ or 10. If $x = 10$, then $y = 20 - 10$, or 10. *The largest product is 100.*