

Slope $\frac{(y_2 - y_1)}{(x_2 - x_1)} = m$
Point Slope $y - y_1 = m(x - x_1)$
Slope Intercept $y = mx + b$
Standard form $Ax + By = C$
Distance between two points
$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$
Midpoint of a line is $(x_1 \pm x_2)$, $(y_1 \pm y_2)$
2 2
x and y cannot equal 0, so graph never reaches 0
To graph, make table and plot points
$y = ax^2 + bx + c$ is vertical parabola
a > 0 opens up, $a < 0$ opens down
vertex is (h,k) of $y = a(x - h)^2 + k$
$x = ay^2 + by + c$ is a horizontal parabola
a > 0 opens right, $a < 0$ opens left
vertex is (h,k) of $x = a(y-h)^2 + k$
Horizontal axis $x^2 - y^2$
$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ Vertices are at $(h, k+b)$ and $(h, k-b)$
Vertices are at $(h, k+b)$ and $(h, k-b)$
Vertical axis $\frac{(y - k)^2}{b^2} - \frac{y^2 - x^2}{a^2} = 1$
Vertices are at $(h-a, k)$ and $(h+a, k)$
Center is at (h, k)
Asymptotes are $y - k = (b/a)(x - h)$ and $y - k = -(b/a)(x - h)$
$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ Center is at (<i>h</i> , <i>k</i>) Vertices: (<i>h</i> - <i>a</i> , <i>k</i>), (<i>h</i> + <i>a</i> , <i>k</i>), (<i>h</i> , <i>k</i> - <i>b</i>), (<i>h</i> , <i>k</i> + <i>b</i>)

ctunstal:5/99