Graphing Compound Inequalities (including Absolute Value, Rational and Quadratic)

Туре	Key Points	Example
Compound, including AND/OR	 General rules, and If 3 part, keep x in center; if it stays < or ≤, graph as AND Graph using AND/OR rules 	$3x + 2 \le 5 \text{ or } 5x - 7 \ge 8$ $3x \le 3 \qquad 5x \ge 15$ $x \le 1 \qquad x \ge 3$ $(\qquad \qquad$
Inequalities with Absolute Values Rational Inequalities (fractions)	 First, isolate the absolute value Second, separate into 2 equations 1) original w/o absolute value 2) multiply right side by negative & reverse inequality Solve, using algebra and general rules Graph using AND/OR rules or graph by using test points <u>NOTE</u>: Once isolated, absolute value cannot equal a negative or be less than zero so answer is "no solution;" however, if set to > or ≥ a negative, "all real numbers." Set right side to 0 Use LCD on the left side to create a single fraction Set each – numerator and denominator – to <u>equal</u> 0 	$ x+2 +9<15$ $ x+2 <6$ $x+2<6 x+2>-6$ $x<4 \text{ (and) } x>-8$ $(35,4)$ $\frac{x}{x+4} \ge 2 (x \ne -4)$ $-(x+8) = 0 x+4=0$ $x+8=0 x=-4$ $x=-8 ** x \ne -4, \text{ so use } 0$
	 Use solutions to establish test points, use open/closed circles (with verticals, if you want), not () [] Denominator <u>cannot include</u> point that makes it = 0, alter the inequality to exclude it Graph using test points 	$ \frac{x+4}{x+4} - \frac{2(x+4)}{x+4} \ge 0 $ $ \frac{x-2x-8}{x+4} \ge 0 $ $ \frac{-x-8}{x+4} \ge 0 $
Quadratic Inequalities	 Set right side to 0 Factor the left side Set each factor to 0 and solve using general rules If it is also rational (fraction), then incorporate those rules Graph using test points 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$